Information Security Now - 22

John Mitchell

Software integrity is a security issue and as such should fall within the CIAC
domains of confidentiality, Integrity availability and compliance. Although we
are primarily interested in the capability of software to do exactly and only what
it is specified to do, we ensure its integrity by having excellent confidentiality,
availability and compliance processes in place — or at least we should have. |
suspect that most software integrity issues are not caused maliciously, but are
as the result of poor change management processes. However, poor change
management does provide an opening for malicious manipulation, so, with my
audit hat on | will attempt to explain where | believe the main issues to be.

Firstly and most importantly the majority of change management processes are
based on trust. Trust in the programmer to correctly make the requested
change; trust in the systems people to adequately test the change and trust in
the user to accept the change after suitable testing. Unfortunately, trust is not a
control mechanism, but an act of faith. If you don’t believe me, the please send
me a signed cheque made out to me with a blank amount. | promise, not to
insert a large amount, nor to submit the cheque for clearing. It will be
interesting to see how trusting you are by the number of such cheques |
receive. The problem with trust is that you only find out that is misplaced after
the event, so it is a pretty useless prevention mechanism. Testing is actually a
trust substitute. You don't really trust the programmer to get it right so you go
into detection mode via a test mechanism. Now this is all well and good, but
unfortunately most test mechanisms centre on the authorised change. If the
programmer inserts some other code at the same time as the authorised
change, then the chances of it being detected during the testing process are
negligible. So let's not be naive. Let us remove trust from the equation. My
(untrusting) change management process goes like this.

1) receive authorised change request;

2) security officer (or equivalent) retrieves digitally signed source code from
once write-only media held in an off-line store;

3) source code is made available to the programmer;

4) programmer makes change, produces executable & tests it;

5) programmer returns amended source to the security officer;

6) security officer does an electronic compare between original & amended
sources;

7) another programmer compares the code changes against the change
request;

8) Assuming that no illicit code is detected by (7), then the security officer
produces a digitally signed executable and promotes it to production;

9) The security officer stores a copy of the amended source and executable
(both digitally signed) onto once write-only media into the off-line store
mentioned in (2) above;

10)Every time the program is now executed its signature is checked.

11)On a regular schedule the production executable is automatically
compared with the copy from the off-line store to detect any really sneaky

manipulation of the production code & signature.

For clarity | have abbreviated the process by removing system and user testing,
but you can add those where you like. The points being that:

1) the programmers know that if they insert illicit code it will detected;

2) the security officer does not have access to code editing tools and
therefore cannot amend the code;

3) any back-door changes to the production code will invalidate the
signature and so will be detected when the code is executed,;

4) as copies of the source and object are held off-line they cannot be
remotely amended,;

5) the regular comparison between the stored object and the production
code will detect any change to the latter which has somehow been done
without invalidating the signature (not that | believe that this could be
achieved anyway).

Of course, if you had collusion between the first programmer and the checking
programmer then you are in trouble, so it would be sensible to rotate the
checking and to have a bonus system which will reward diligent checking. Most
of what | propose can be easily automated which puts into level four/five on the
CMMi scale and thus makes it Sarbanes-Oxley compliant too. Which brings me
to my last point. Many so called controls | examine are just processes. There
is no real control in the sense of prevention, or detection that can be effectively
measured and | am constantly amazed that many security officers (and auditors
for that matter) cannot define what a control is, or how it works, which is why |
am forever telling them that the nice move from inherent red to residual green in
their risk register is a figment of their imagination. Non more so than with their
change management processes which are usually beautifully documented with
wonderful flow charts, but a primarily trust based.

John is Managing Director of LHS Business Control, a corporate governance consultancy. He
is a member of Council and a former chair of the Information Risk Management and Assurance
(IRMA) specialist group. He can be contacted at: john@Ihscontrol.com, www.lhscontrol.com, or
on +44 (0)1707 851454

mailto:john@lhscontrol.com
http://www.lhscontrol.com/

